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Abstract

Introduction: This study aims to explore machine learning (ML) methods for early prediction of 

Alzheimer’s disease (AD) and related dementias (ADRD) using the real-world electronic health 

records (EHRs).

Methods: A total of 23,835 ADRD and 1,038,643 control patients were identified from the 

OneFlorida+ Research Consortium. Two ML methods were used to develop the prediction models. 
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Both knowledge-driven and data-driven approaches were explored. Four computable phenotyping 

algorithms were tested.

Results: The gradient boosting tree (GBT) models trained with the data-driven approach 

achieved the best area under the curve (AUC) scores of 0.939, 0.906, 0.884, and 0.854 for early 

prediction of ADRD 0, 1, 3, or 5 years before diagnosis, respectively. A number of important 

clinical and sociodemographic factors were identified.

Discussion: We tested various settings and showed the predictive ability of using ML 

approaches for early prediction of ADRD with EHRs. The models can help identify high-risk 

individuals for early informed preventive or prognostic clinical decisions.
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Alzheimer’s disease (AD); Alzheimer’s disease and related dementias (ADRD); data-driven 
approach; machine learning; real-world data; risk prediction

1 | INTRODUCTION

Alzheimer’s disease (AD) and related dementias (ADRD) is a class of complicated 

neurodegenerative disorders with symptoms ranging from short-term memory lapses to 

loss of bodily function until death.1 ADRD gradually diminishes the quality of life of the 

affected older population. An estimated 6.5 million Americans 65 years of age or older 

are living with AD—the sixth leading cause of death in 2022; and by 2050, 12.7 million 

people age 65 and older are projected to have AD.2 There is still no effective treatment for 

AD to date despite decades of investment.3–5 More than 99% of AD/ADRD-related clinical 

trials have failed to develop effective treatments and there have been only six U.S. Food 

and Drug Administration (FDA)–approved drugs (i.e., rivastigmine, galantamine, donepezil, 

memantine, manufactured combination of memantine and donepezil, and recently approved 

aducanumab) for alleviating the symptoms of ADRD since 1998.6,7 One potential reason 

for the high failure rate is that it may be too late to give the treatments to patients when 

the dementia is already symptomatic.3 Furthermore, underdiagnosis of ADRD is significant, 

especially in the primary care setting.2 Among older adults with probable dementia, 58.7% 

were either not diagnosed (39.5%) by a physician or unaware (19.2%) that they had the 

disease.8 Increasing evidence suggests that early recognition of ADRD is critical, not only to 

give patients with ADRD patients more time to prepare for the future, for example, referral 

to specialty care and to initiate timely preventive actions (e.g., diet and lifestyle changes) or 

early treatments of symptoms (e.g., diet and lifestyle changes), but also to help researchers 

better identify and characterize clinical trial participants.9 The neurodegenerative processes 

of ADRD start years before the onset of clinical symptoms and prior to diagnoses, leaving a 

wide time window of opportunities for early prediction and identification of risk factors.10

Many data sources have been explored for the prediction of ADRD,11,12 and various 

predictive modeling techniques including both statistical and machine learning (ML) models 

have been employed.13 For example, previous studies have investigated neuroimaging data 

such as those from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),14,15 which 

demonstrated good performance,16 with many of these studies focused on predicting the 
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conversion from mild cognitive impairment (MCI), already a clinical stage, to dementia 

due to ADRD.17–19 However, because they are expensive, neuroimaging procedures are 

normally ordered only for patients who either already have clinical symptoms or are at 

high-risk, making neuroimaging-based prediction methods impractical in real-world settings 

for early prediction.20,21

With the rapid adoption and continuous improvement of electronic health record (EHR) 

systems in the United States, large collections of longitudinal EHRs are becoming available 

for clinical research.22,23 Many risk factors of ADRD identified by previous studies (e.g., 

obesity, hypertension, high cholesterol) are routinely captured in patients’ EHRs.11 Recently, 

several studies have explored EHR data for ADRD risk prediction. Patient information such 

as diagnoses, medications, laboratory tests, and other medical procedures were investigated 

as predictors. For example, Nori et al. used de-identified administrative claims and EHR 

data from the OptumLabs and developed a predictive model using gradient boosting 

tree (GBT).24 Park et al. explored three ML algorithms including logistic regression 

(LR), support vector machines (SVMs), and random forests (RFs) using an administrative 

healthcare data set (e.g., claims and health check-ups) from South Korea.25 Both Nori 

et al. and Park et al. followed a data-driven strategy where all discrete diagnoses codes, 

medications, and procedures were used in building the predictive models. However, they 

did not consider existing knowledge of ADRD risk factors from domain experts or existing 

literature. Furthermore, Park et al. tested only two operational definitions of AD, that is, 

definite AD via diagnosed codes combined with dementia medication, and probable AD via 

only diagnosis codes;25 and the sample sizes were also small (i.e., n = 614 for definitive 

AD, and n = 2026 for probable AD). However, use of diagnostic codes alone is not accurate 

for identifying research-quality cohorts using EHRs,26–28 including for MCI29 and AD.30,31 

This is why computable phenotypes (CPs, i.e., “clinical conditions, characteristics, or sets of 
clinical features that can be determined solely from EHRs and ancillary data sources.”) are 

needed.32–34 The National Institute on Aging (NIA)’s AD+ADRD Research Implementation 

Milestones also calls for “better electronic phenotyping of AD.”35 Nori et al. considered a 

broader definition of all AD-related dementias, including MCI, and used more complicated 

case definition rules (e.g., “a brain scan followed by a confirming diagnosis”),24 which may 

lead to a higher precision but limited sensitivity.

In contrast to previous studies, we comprehensively explored different prediction models 

and settings using large collections of real-world EHR data from the OneFlorida+ 

Clinical Research Consortium—a clinical research network that is part of the National 

Patient-Centered Clinical Research Network (PCORnet)36 funded by the Patient-Centered 

Outcomes Research Institute (PCORI), to create prediction models that can identify patients 

at risk of developing ADRD, including AD, vascular dementia (VaD), Lewy-body dementia 

(LBD), frontotem-poral dementia (FTD), or mixed dementia (i.e., patients with multiple 

ADRD subtypes). We tested four CP algorithms with different performances (in terms of 

specificity and sensitivity) to define the case group (i.e., patients with ADRD). Furthermore, 

we experimented with two different approaches to build the prediction models: (1) a 

knowledge-driven approach, where predictors were identified by domain experts based on 

existing literature, and (2) a data-driven approach, where all variables from the EHRs were 

used as predictors. In addition, we systematically explored different prediction windows: 
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0-year (i.e., all data before diagnosis), 1-year, 3-year, and 5-year using two widely used ML 

algorithms (i.e., LR and GBT). Our goal is to develop a robust prediction model that can 

identify patients at high risk for ADRD years before their initial diagnosis using routinely 

collected EHRs.

2 | METHODS

2.1 | Data source and study population

This study used data from the OneFlorida+ Clinical Research Consortium, a clinical 

research network contributing to the national PCORnet effort, with longitudinal EHRs 

linked with various other data sources (e.g., Medicaid and Medicare claims, vital statistics, 

and selected tumor registries, among others) for ≈16.8 million Floridians since 2012, 

and covering a wide range of patient characteristics including demographics, diagnoses, 

medications, procedures, vital signs, and lab tests, among others. This study was approved 

by the University of Florida Institutional Review Board under IRB201900182.

Figure 1(A) shows an overview of the study cohort construction process. Because ADRD is 

an age-associated disease, we are interested in predicting ADRD diagnosis in adults older 

than 50 years of age. As we needed to create a matched control cohort, we started with an 

initial cohort of 3,645,934 patients that (1) were 40 years of age and older as of January 1, 

2012 (i.e., the starting date of the records in OneFlorida+); and (2) had at least 1 year of 

medical history in the database (i.e., at least two health care visits, where the last encounter 

of the patient observed in OneFlorida+ was at least 1 year from the first encounter).

2.2 | Definition of cases and controls

Most previous studies on predicting ADRD-defined cases using International Classification 

of Diseases, Ninth/Tenth Revision (ICD-9/ICD-10) diagnosis codes including MCI and/or 

various subtypes of ADRD and prescribing of anti-dementia medications.24,25,37–40 In 

this study, we defined ADRD cases (i.e., AD, VaD, LBD, FTD, and mixed type) 

using a combination of diagnostic codes and anti-dementia medications (i.e., donepezil, 

galantamine, memantine, and rivastigmine), based on existing relevant computable 

phenotypes in the literature.41 There are currently six FDA-approved medications for 

AD treatment, that is, (rivastigmine, galantamine, donepezil, memantine, manufactured 

combination of memantine and donepezil, and aducanumab).7 We did not include 

aducanumab, as it was only recently approved in 2021, and the study data only covered 

patients in OneFlorida+ up to 2021. All the diagnostic and medication codes we used are 

included in the supplementary materials. Table 1 shows the four, rule-based CP algorithms 

we identified from the literature. Note that our focus is on leading causes of ADRD (AD, 

VaD, LBD, FTD, and mixed type), whereas some of the original CPs included AD only, or 

additional causes of dementias (see Table 1).

We defined the controls as patients who (1) had no ADRD-related diagnoses (i.e., AD, 

VaD, LBD, and FTD); (2) had no other conditions associated with or causally related 

to dementia (e.g., MCI, Parkinson’s disease, Huntington’s disease, HIV, alcoholism, etc.); 

and (3) had no exposure to dementia-related medications. Each case was matched with 
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up to 10 patients from the control group without replacement based on propensity scores, 

controlling for patients’ birth years, gender, race-ethnicity, and Charlson comorbidity index 

(dementia-related conditions were excluded). Note that we tested four different CPs; thus 

each case cohort defined by each CP has a corresponding matched control cohort, as shown 

in Figure 1 (A, B).

2.3 | Observation period and prediction window

Figure 1(C) shows a patient timeline for the prediction task using the OneFlorida+ database. 

We defined the index date for the case as the first encounter with an ADRD diagnosis 

or a dementia-related medication prescription, whichever came first. For the controls, we 

identified a similar “index date” according to their corresponding cases. We required that 

the control must have an age within 1 year of the case and must have encounters within 6 

months of the index date of its corresponding case. We then selected the encounter date of 

the control closest to the index date of its corresponding case as reference “index date” for 

the control.

We split the patient timeline before the index date into two segments: (1) the prediction 

window: we defined various prediction windows, including 0 years, 1 year, 3 years, and 

5 years before the index date (i.e., recorded ADRD diagnosis or treatment), and (2) the 

observation period: defined as from the first encounter recorded in the OneFlorida+ database 

to the beginning of the defined prediction window. Only data from the observation period 

were used for prediction and we used different prediction windows to assess how far in 

advance we could predict ADRD. We included only patients who had at least a 1-year 

observation period in the predictive models.

2.4 | Machine learning algorithms and features

We first tested various ML algorithms (e.g., random forest, support vector machine, etc.) 

on a smaller subset of the entire population and chose two algorithms for the rest of 

the experiments: logistic regression as the baseline, and GBTs,42 which had the best 

performance in our small-scale experiments.

We adopted two feature engineering strategies, including a knowledge-driven approach and 

a data-driven approach. For the knowledge-driven approach, we used risk factors identified 

from the existing literature43,44 and by domain experts on the study team including: (1) 

medical diagnoses of obesity, diabetes, hyperlipidemia, hypertension, heart disease, stroke, 

depression, anxiety, concussion, sleep disorders, periodontitis, smoking, and alcohol use; (2) 

medication exposures, including nonsteroidal anti-inflammatory drugs (NSAIDs), statins, 

anticholinergics, hormone replacement therapies, antihypertensives, benzodiazepines, and 

proton pump inhibitors; and (3) the most recent vital signs and lab test results, including 

body mass index (BMI), systolic/diastolic blood pressure, total cholesterol, high-density 

lipoprotein, glucose, and hemoglobin A1C (HbA1c) in the observation period. Diagnoses 

and medication histories were coded as binary variables in the models. BMIs, blood 

pressures, and lab result values were categorized based on the reference normal range (e.g., 

abnormally low, normal, or abnormally high).
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For the data-driven approach, we used all variables captured by the EHRs (including and 

beyond those listed for the knowledge-driven approach) with minimal pre-processing in 

the prediction models. More specifically, we categorized the demographic and behavioral 

variables, such as age, gender, race, ethnicity, marital status, and smoking status. We also 

included all discrete diagnosis codes, all medication RxNorm codes (and National Drug 

Codes [NDCs] are mapped to RxNorm), and all procedure codes recorded in patients’ 

EHRs as categorical features. To reduce the sparsity of the features, we adopted a code 

grouping/merging strategy similar to that described in our previous study.45 For diagnoses, 

we mapped a total of 30,064 unique ICD-9/ICD-10 codes to a number of 1912 PheWas 

(Phenome-wide association studies) groups.46 For medication, we mapped all the RxNorm 

codes for clinical drugs and branded drugs (22,492 unique codes) to ingredient-level codes 

(3159 unique codes). We aggregated all 11,880 unique procedure codes (including Current 

Procedural Terminology [CPT] and ICD-9/ICD-10 procedure codes) into 228 unique CCS 

(Clinical Classification Software) groups. We encoded all categorical features using the 

one-hot encoding scheme. Same as the knowledge-driven approach, we treated the real-

valued variables (i.e., BMI, systolic and diastolic blood pressures, and lab test results) as 

categorical variables in the model. Because a patient can have multiple findings and/or 

lab test measurements from different encounters, we used the values from the most recent 

encounter before the end of the observation period for categorization. For lab test results, 

we used the abnormal indicator available in the PCORnet common data model (CDM) and 

then lab results were converted into normal, abnormal high, critical high, abnormal low, and 

critical low levels.

2.5 | Experiments and evaluation

We split data into a training set (80%) and a testing set (20%) using stratified sampling. 

We optimized ML models using the training set via 5-fold cross validation and optimized 

hyperparameters using randomized search. We then applied the best model on the test set 

for evaluation. For the evaluation metric, we used the area under the receiver-operating 

characteristic (ROC) curve (AUC). We also calculated the sensitivity, specificity, positive-

predicted value (PPV), and negative-predicted value (NPV) determined by optimizing the 

maximum value of Youden’s index. We conducted bootstrapping with 100 iterations to 

obtain point estimate and 95% confidence intervals (Cis) for each evaluation metric.

2.6 | Identification of important risk factors

We adopted the SHAP (SHapley Additive exPlanations) method47 to identify the key risk 

factors contributed to the prediction and estimated the associations between the risk factors 

and the outcomes. We created SHAP bar plots and summary plots for the top 20 risk factors 

for the GBT models (as they are the best performing models) for both knowledge-driven 

and data-driven approaches. Positive SHAP values indicated features that can increase the 

probability of developing ADRD, whereas negative SHAP values indicated features that can 

decrease the risk. The absolute SHAP value of each feature indicates its importance.
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3 | RESULTS

Because our CP1 (i.e., have at least one encounter with a valid ADRD diagnosis code) has 

the most relaxed rules, Table 2 shows the descriptive statistics of the case and control groups 

identified using CP1. Descriptive statistics of the other three CPs are detailed in the Tables 

S1–S3 (descriptive statistics in case and control groups for CP2, CP3, and CP4). Table 3 

shows the prediction performance measure by AUC for knowledge-driven and data-driven 

approaches.

As shown in Table 3, the GBT model consistently outperformed the LR model in terms 

of AUC in all four cohorts using either the knowledge-driven or the data-driven feature 

selection approach. The GBT model with data-driven feature selection achieved the best 

AUC scores of 0.939, 0.906, 0.884, and 0.854 for predicting ADRD at 0, 1, 3, and 5 years 

before initial diagnosis, respectively, where the best performing 0-, 1-, and 3-year models 

were from the CP3 cohort and the best performing 5-year model was from the CP2 cohort. 

Consistently, the AUC decreased as the prediction window became larger; the CIs grew 

larger as the prediction window increased from 0 years to 5 years; and the data-driven 

approach using all EHR data elements significantly outperformed the knowledge-driven 

approach with features derived from domain knowledge. Similar results are obtained for 

other performance metrics including specificity, sensitivity, PPV, and NPV (see Tables S4–

S7).

Figure 2 shows the SHAP summary plots cross-comparing 1-year versus 5-year and CP1 

versus CP3 models under the knowledge-driven approach. We only show CP1 and CP3 in 

the main text because, as case definition algorithms, (1) CP1 captures the most patients 

(see Figure 1(B)) but with high false positives, and (2) CP3 has the highest PPV (i.e., 

the lowest misclassification errors, although with significantly higher false negatives). The 

SHAP summary plots for all other models are included in the Supplementary Material (see 

Figures S1–S4). As shown in Figure 2, age, history of stroke, history of depression, history 

of diabetes, history of diabetes, and history of heart disease are the most important features 

to predict the risk of ADRD. The risk increases with age, stroke, and depression, whereas 

BMI in range (18.5, 23] reduced the risk of ADRD. BMI gradient boosting tree 30 is also 

negatively associated with the risk of ADRD.

Similarly, Figure 3 examined the top-20 important data-driven features identified using 

SHAP values for 1-year and 5-year and CP1 versus CP3 models. The SHAP plots for all 

other data-driven models are included in the supplementary material (see Figures S5–S8). 

As shown in Figure 3, age, cerebrovascular disease, mood disorders, diabetes mellitus, 

malaise, and fatigue are the most important features for predicting the risk of ADRD. Age 

≥70, history of cerebral ischemia, and history of cerebrovascular disease increase the risk of 

AD/ADRD. Age < 60 decreases the diagnosis risk for all models. BMI > 30 is also negative 

associated with the risk of ADRD. Black and African Americans, debility, contusion, and 

epilepsy are positively associated with the risk of ADRD.

Results of all the models and settings that we have tested are included in the supplementary 

materials.
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4 | DISCUSSION

In this study, we systematically examined the prediction of ADRD using ML models and 

four different CP algorithms to identify ADRD patients from the OneFlorida+ real-world 

data (RWD). For each ML algorithm, we compared knowledge-driven and data-driven 

approaches for feature selection and tested the performance using different prediction 

window sizes including 0, 1, 3, and 5 years before ADRD diagnosis. The GBT model with 

data-driven features selection significantly outperformed the LR models and/or knowledge-

driven approaches and achieved the best AUC scores of 0.939, 0.906, 0.884, and 0.854 

for the prediction of 0, 1, 3, and 5 years before ADRD diagnosis, respectively, indicating 

that ML models can predict ADRD years before diagnosis using real-world clinical data. 

Early prediction of ADRD in real-world clinical settings can help providers, patients, 

and their caregivers plan ahead of time (e.g., lifestyle changes such as increase muscle 

strength, as muscle weakness is a risk factor revealed by our study associated with an 

increase future ADRD risk) and hopefully soon, to apply potential effective pharmacological 

disease-modifying treatments. All the models had high NPVs (≈0.9), making them effective 

in pinpointing people who will not develop ADRD, but relatively low PPVs (≈0.4–0.5), 

indicating that the models will identify a high proportion of false positives (see Table S4). 

Nevertheless, the ADRD prediction models using EHR can target higher risk patients for 

confirmatory biomarker studies.

The performance of the models varied across different prediction windows and cohorts 

identified using different CP rules. It is understandable that the model performance dropped 

as the size of the prediction window increased from 0 years to 5 years; and that the 

models were more confident in predicting ADRD onset as more data points were available 

closer to the initial diagnoses. For example, the CIs of these models became smaller when 

the prediction window reduced to 0 years. Note that 0-year prediction (i.e., predicting 

ADRD right before the onset dates) can be significantly biased and have low utility as 

the models may well be predicting clinicians’ diagnostic processes rather than the disease 

development itself. Nevertheless, the 0-year models provide us the upper bounds of the 

models’ predictive ability, where the best AUC score for the 0-year model is 0.939, 10.9% 

higher than the 5-year model (i.e., an AUC score of 0.856). An interesting finding is that 

the performance varied among the different models built with the four different CPs (i.e., 

used to define ADRD cases as the outcomes). The cohort identified by CP3 (i.e., patients 

have at least five unique encounters with ADRD codes) had the best prediction performance 

followed by cohorts identified by CP2, CP1, and CP4, in general with minor variations. 

Most previous studies predicting ADRD often identified cases using only diagnosis codes 

without considering other information such as medications to develop more complex CP 

algorithms to reduce the misclassification errors when identifying cases.

We compared knowledge-driven and data-driven feature selection in ML models and the 

experimental results showed that the data-driven feature selection outperformed knowledge-

driven across all models, demonstrating that ML methods are capable of exploring a 

large feature space and identifying features that human experts might have missed. For 

example, preventive care such as routine medical exam, mammogram screening, and 

routine gynecology examination are negatively associated with the risk of ADRD under 
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the data-driven approach. In particular, mammogram screening is one of the top-20, 

important features in several settings. Preventive care may be a surrogate marker for social 

determinants of health. Women who receive preventive health care are more likely to be 

highly educated, wealthier, and have health insurance. They are more likely to adopt other 

healthy lifestyle habits (not measured by EHR, such as physical exercise, healthy eating, 

lifelong learning, taking vitamins, and so on) that are associated with reduced risk of 

ADRD. However, we want to emphasize that associations are not causations, and predictive 

models are not causal models. The underlying causal mechanisms about how mammogram 

screening and routine gynecology examination reduce the risk of ADRD is still not clear. 

Nevertheless, our prediction models pinpoint the factors and directions of interest that 

warrant further investigations (e.g., patients who frequently use preventive services are 

generally healthier than those who do not).

Furthermore, the advantage of data-driven approach over knowledge-driven approach 

diminished as the size of the prediction window increases (e.g., an AUC of 0.9 vs an AUC 

of 0.871% to 5.7% improvement for the 1-year CP1 models, whereas 0.856 vs 0.841% to 

1.8% improvement for the 5-year CP1 models, comparing data-driven vs knowledge-driven 

approaches, respectively). This is potentially because the knowledge-driven features are 

derived from established scientific literature (that summarized randomized control trials and 

large cohort studies among others) that capture the underlying causal mechanisms of the 

disease etiology and development process, whereas the data-driven approach may capture 

more spurious correlations between some of the additional trivial features and disease 

outcome, which can still improve the predictive ability of the corresponding models.

We identified important features of each model by calculating their SHAP values (see 

Figures S1–S8). We observed that different ML models often utilized different combinations 

of features, possibly due to the variations in model assumptions of the classification 

algorithms. For example, the analysis of top-10 features across the four different cohorts 

using data-driven and knowledge-driven approaches for feature selection showed that the 

NL models tend to use different combinations of features for different prediction windows, 

indicating that the feature importance changed relative to the progress of disease (i.e., some 

factors are important for long-time prediction such as 5-year model and others are important 

for short-term prediction such as 1-year model). This is understandable, as prior evidence 

suggests that different factors may influence the development of ADRD at different stages 

of the patient’s life course,48 and there exists heterogeneity in ADRD progression pathways 

(e.g., faster progression or with the different clinical syndrome).49,50 In addition, there are 

differences between the data-driven and knowledge-driven approaches. The top-10 features 

of the four different CP rules of the knowledge-driven approach are very similar for the same 

prediction windows. Age, BMI range (18.5, 23], history of stroke, and history of depression 

were the most important features under the knowledge-driven approaches. However, for the 

data-driven approaches, the top-10, important features are slightly different across different 

CP rules, even for the same prediction window. Although some of the features identified by 

the data-driven approach, such as mood disorders, malaise, and fatigue, could be part of the 

preclinical ADRD, they may be extremely useful for identifying asymptomatic individuals 

at high risk of ADRD and for allowing the search for new drugs or other methods such as 

vaccines or genetic manipulations that might slow or prevent the progress of ADRD (e.g., 
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identify participants at high ADRD risk with preclinical risk factors into these trials).51 

Nevertheless, age ≥70, and cerebrovascular disease, mood disorders, and diabetes mellitus 

are positively associated with the risk of ADRD across all cohorts. BMI >30 is negatively 

associated with the risk of ADRD in both data-driven and knowledge-driven approaches.

ADRD is a significant cause of morbidity and mortality in the elderly. Long-term cognitive 

decline due to ADRD can affect the diagnosis and treatment of comorbidities and generate 

complex management.52 Although AD is the most common diagnosis, other ADRDs 

often share biologically and clinically similar features with AD, making them difficult to 

distinguish from. There exists a substantial level of underdiagnosis of AD, especially in the 

primary care settings. Early recognition of potential ADRD as a group through automated 

prediction models is critical in clinical settings, so that the patients with high risks can 

be referred to specialized clinics and guide subsequent care of these patients. Furthermore, 

to build clinical decision support based on these prediction models, it is not that a single 

prediction model will rule it all but likely that a combination of tailored prediction models 

will have to be used. For example, along a patient’s life course, the first step may require 

models to identify ADRD risk years in advance (e.g., our 5-year model); and as the disease 

progresses, a short-term model (e.g., the 1-year model) can be used, followed by the need to 

identify the risk of subtypes. Moreover, ADRD prediction models cannot only give ADRD 

patients more time to prepare for the future, but also be used in other settings, such as to help 

researchers better identify and characterize clinical trial participants.9

Our study does have several limitations. First, our results were not validated with an external 

EHR data set. Although OneFlorida+ is a large, real-world clinical database, the study 

population may not be representative of the general ADRD population. Second, our study 

was a case-control study that considered a cohort of patients ≥ 50 years of age (i.e., a 

cohort of patients at risk for ADRD). Compared to cohort studies, case-control studies 

are relatively simple to implement, but they are not as good at showing causality and 

are more prone to bias.53 Third, this study is a secondary analysis of observational EHR 

data, which comes with its own pitfalls,54 including data quality issues55 such as complex 

missingness situation and documentation errors (that can leave to a number of analytical 

challenges, e.g., misclassification errors), selection bias of the population captured by EHRs, 

and confounding and informed presence bias56 (e.g., information captured in EHR is not 

random, but tied to patients’ encounters with the health system when they are ill), among 

many other issues. For example, our study did not consider clinical texts in EHRs that 

may contain additional information about patients’ status. Nevertheless, EHR-based study 

is a critical new tool to generate real-world evidence as promoted by the FDA.57,58 Our 

attempts to use CP phenotypes is one way of dealing with these limitations to minimize 

misclassification errors.

5 | CONCLUSION

Early prediction of ADRD is challenging as multiple and complex mechanisms are involved 

in pathogenesis. This study systematically explored four different cohorts of patients with 

ADRD identified using four CP rules from relaxed to strict and examined feature selection 

using knowledge-driven and data-driven approaches. Our study identified the prediction 
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variance among different cohorts and different prediction windows and further assessed the 

important features of different cohorts using SHAP values. The presented prediction models 

could help identify patients at a higher risk of ADRD ahead of onset, identify important 

factors for early prediction (and early prevention), help reveal research directions (i.e., why 

certain risk factors are significant), and facilitate recruitment of individuals at the early 

stage of probable ADRD before into clinical trials. Future work shall focus on (1) advanced 

analytical methods that can account for the data and analytical challenges with real-world 

EHR data, and (2) validating the prediction models built with OneFlorida+ data using 

external data sets (both EHR and non-EHR data sources) that cover different populations, 

given the known heterogeneity of ADRD.
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RESEARCH IN CONTEXT

1. Systematic Review: We reviewed the literature using traditional methods 

and sources (e.g., Google Scholar, PubMed). Research suggests that early 

prediction of Alzheimer’s disease and related dementia (ADRD) in real-world 

clinical settings can help providers, patients, and their caregivers plan ahead 

of time (e.g., lifestyle changes) and it is hoped soon, to apply potential 

effective pharmacological disease-modifying treatments.

2. Interpretation: The study demonstrated the feasibility of using machine 

learning approaches for early prediction of ADRD diagnosis (as a proxy of 

ADRD onset).

3. Future Directions: Further work is necessary to identify the best strategy to 

implement ADRD prediction algorithms like the ones in this study into the 

clinical workflow. A promising direction would be a shared decision-making 

app that helps patient-physician dyads assess a patient’s personalized risk, 

understand the limitations of the risk prediction, and decide on the best course 

of action from evidence-based risk factor modifications.
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FIGURE 1. 
Overview of the study cohort extracted from the OneFlorida+ network. (A) Flowchart 

of patient selection. (B) Venn diagram of four computable phenotypes (CPs). (C) Patient 

timeline for the prediction task
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FIGURE 2. 
Under the knowledge-drive approach, SHAP plot of the top-20 features for GBT models 

based on CP1 and CP3 algorithms: (A) 1-year prediction window and (B) 5-year prediction 

windows
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FIGURE 3. 
Under the data-driven approach, SHAP plot of the top-20 features for GBT models based on 

CP1 and CP3 algorithms: (A) 1-year prediction window and (B) 5-year prediction window. 

*SBP: systolic blood pressure
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